Import of Complex XSD Type Deriving from a Simple Type

XML schemas allow to specify a complex type by extending a simple one. The schema below shows an example defining the complex type MyDerivedEle
ment by extending the type MyType. MyType is an enumeration of string values. A XML instance complying to this schema is depicted below as well.
When mapping MyDerivedElement to an UML class, we follow the same rules as for other complex types except that we add an additional attribute XMLSi
mpleContent that holds that actual value of the XML element. In the example below, XMLSimpleContent would evaluate to the string a.

Schema

<xs:schema xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema" >

<xs:sinpl eType nanme="MType">
<xs:restriction base="xs:string">
<xs:enumeration val ue="a"

<xs:enuneration val ue="b"/>
</ xs:restriction>
</ xs: si npl eType>

<xs: el enent name="MDeri vedEl enent">
<xs: conpl exType>
<xs: si npl eCont ent >
<xs: ext ensi on base="MWType">
<xs:attribute name="nyAttribute" type="
xs:string"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>
</ xs: el ement >

</ xs: schema>

Mapping Rule

XML Instance

<MyDerivedEl enent nyAttribute="xx">a<
/ MyDer i vedEl enent >

UML Class

aXML=
MyDerivedElement
lisMixed,
kmIElementtame = "MyDerivedElement'}

+myAttribute : String [0..1]
+¥MLSimpleContent : String

Each complex XSD type that is derived from a simple type is mapped to an UML class having a special attribute XMLSimpleContent that holds the
actual value of the element. We do not map the XSD extension element to an UML generalization in this case because this would be inconsistent to
our internal meta model where each type deriving from a simple type is a simple type as well.



	Import of Complex XSD Type Deriving from a Simple Type

