
1.
2.
3.

Continuous Delivery with the Bridge
Based on a straightforward and repeatable process, the continuous delivery approach helps with
building, testing and releasing software faster. On this page, we will show how you can automate your
build, deploy, and testing processes using an automation tool together with the Bridge command line
tools.
To take full advantage of this scenario, you need the which is part of xUML Command Line Compiler Brid

.ge 7

Prerequisites
The following will guide you through an continuous delivery example. Here, we are using , an Jenkins
open source automation tool, and , an open source version control tool. To set up a similar scenario, Git
you need

a Builder development project that has been checked in into a Git repository
a Jenkins installation, e.g. 2.89.2.
the xUML Command Line Compiler
the Bridge Command Line Interface
the Regression Test Runner

Approach
Set-up a job in Jenkins that checks minutely for changes to your git repository and triggers a
build process in case of changes.
The build process itself is defined in a Jenkinsfile that is part of the Git repository and contains
the following steps:

Building the xUML repository file using the .xUML Command Line Compiler
Deploying the compiled repository using the .Bridge Command Line Interface
Running regression tests on the deployed services with the .Regression Test Runner

Setting Up a Job in Jenkins
First, you need to set up a job in Jenkins that will look for changes to your Git repository regularly and
trigger the build process in case of changes.

Create a new Jenkins item: a job.Multibranch Pipline

Specify where
to get the sour

 from: it ces
will be Git in
this example.
Select a Git
repository and
provide
credentials if
necessary.

Build
configuration
will be by
Jenkinsfile.
This file will
be explained
further below.

On this Page:

Prerequisites
Approach
Setting Up a Job in Jenkins
Setting Up a Jenkins
Command File
The Build Process
Some Jenkins Hints
Other Useful Tasks to be
Automated

Related Pages:

External Tools:

Git Documentation
Jenkins User
Documentation
Apache Groovy Script
Documentation

Bridge Tools:

xUML Command Line
Compiler
Bridge Command Line
Interface
Regression Test Runner

https://doc.scheer-pas.com/display/BRIDGE/xumlc
https://doc.scheer-pas.com/display/BRIDGE/xumlc
https://doc.scheer-pas.com/display/BRIDGE/Bridge+CLI
https://doc.scheer-pas.com/display/ANALYZER/Running+Regression+Tests+From+Command+Line
https://doc.scheer-pas.com/display/BRIDGE/xumlc
https://doc.scheer-pas.com/display/BRIDGE/Bridge+CLI
https://doc.scheer-pas.com/display/ANALYZER/Running+Regression+Tests+From+Command+Line
https://git-scm.com/documentation
https://jenkins.io/doc/
https://jenkins.io/doc/
http://groovy-lang.org/documentation.html
http://groovy-lang.org/documentation.html
https://doc.scheer-pas.com/display/BRIDGE/xumlc
https://doc.scheer-pas.com/display/BRIDGE/xumlc
https://doc.scheer-pas.com/display/BRIDGE/Bridge+CLI
https://doc.scheer-pas.com/display/BRIDGE/Bridge+CLI
https://doc.scheer-pas.com/display/ANALYZER/Running+Regression+Tests+From+Command+Line

Specify the tri
 that will ggers

lead to
execution of
this job.
Check Periodi

 and cally
select 1 (once
per) minute.
Jenkins will
check every
minute for
changes on
the repository
and then do
what is
configured in
the Jenkinsfile.

Setting Up a Jenkins Command File
In your Git repository, you need a - a Apache Groovy script file that contains the build steps Jenkinsfile
to be performed by Jenkins. The file must be named exactly like that, Jenkinsfile (without extension), and
must reside in the root directory of the Git repository.

#!groovy

pipeline {
 agent {
 node {
 label 'Windows'
 customWorkspace "workspace/test-xUML-project"
 }
 }

 options {
 buildDiscarder(logRotator(numToKeepStr: '10',
artifactNumToKeepStr: '1'))
 disableConcurrentBuilds()
 }

 parameters {
 choice(name: 'XUMLC', choices: 'D:/jenkins/userContent/xumlc/xumlc-
7.10.0.jar', description: 'Location of the xUML Compiler')
 choice(name: 'REGTEST', choices: 'D:/jenkins/userContent
/RegTestRunner/RegTestRunner-nightly.jar', description: 'Location of the
Regression Test Runner')
 }

 stages {
 stage('Build') {
 steps {
 dir('Advanced Modeling/E2ELibrary') {
 bat """
 java -jar ${XUMLC} -uml uml/librarySQLQuery.xml
 copy repository\\librarySQLQuery\\librarySQLQuery.
lrep libs\\
 java -jar ${XUMLC} -uml uml/useLibrarySQLQuery.xml
 """
 archiveArtifacts artifacts: 'repository
/useLibrarySQLQuery/UseE2ELibraryExample.rep'
 }

 dir('Advanced Modeling/PState') {
 bat """
 java -jar ${XUMLC} -uml uml/pstatePurchaseOrder.xml
 """
 archiveArtifacts artifacts: 'repository
/pstatePurchaseOrder/PurchaseOrderExample.rep'
 }

 }
 }
 stage('Deploy') {
 steps {
 dir('Advanced Modeling') {
 bat '''
 e2ebridge deploy E2ELibrary/repository
/useLibrarySQLQuery/UseE2ELibraryExample.rep -h <Bridge host> -u <user> -P
<password> -o overwrite
 e2ebridge deploy PState/repository
/pstatePurchaseOrder/PurchaseOrderExample.rep -h <Bridge host> -u <user> -
P <password> -o overwrite
 '''
 }
 }
 }
 stage('Test') {
 steps {
 dir('Advanced Modeling') {
 bat """
 java -jar ${REGTEST} -project PState -suite "QA
Tests/Tests" -logfile result.xml -host <Bridge host> -port <port> -
username <user> -password <password>
 """
 }
 }
 post {
 always {
 junit 'Advanced Modeling/result.xml'
 }
 }
 }
 }
}

Code Snippet Description

agent {
 node {
 label 'Windows'
 customWorkspace
"workspace/test-xUML-project"
 }
}

Section definesagent

the name of the agent that should execute the
build
the common workspace directory on this agent for
all branches within the Git repository. If not
specified, Jenkins will create a separate
workspace for every branch.

options {
 buildDiscarder(logRotator
(numToKeepStr: '10',
artifactNumToKeepStr: '1'))
 disableConcurrentBuilds()
}

Section definesoptions

the count of build logs to keep
the count of build artifacts to keep
whether concurrent builds are allowed

parameters {
 choice(name: 'XUMLC',
choices: 'D:/jenkins/userContent
/xumlc/xumlc-7.10.0.jar',
description: 'Location of the
xUML Compiler')
 choice(name: 'REGTEST',
choices: 'D:/jenkins/userContent
/RegTestRunner/RegTestRunner-
nightly.jar', description:
'Location of the Regression
Test Runner')
}

Section defines parameters to use further parameters
below in the script. If you provide multiple choices,
Jenkins will generate a dropdown list to select from.
The first list item serves as the default value. This
default will be selected, if the script is triggered
automatically.

A build with newly added parameters will always
fail for the first time, because Jenkins needs the
first run to add the parameters to the pipeline
configuration.

1.
2.
3.

stages {
 stage('Build') {
 [...]
 }
}

In section , you can define named build stages. stages
If the processing of one stage fails, the subsequent
stages will not be processed.

steps {
 dir('Advanced Modeling
/E2ELibrary') {
 bat """
 java -jar ${XUMLC} -uml
uml/librarySQLQuery.xml
 copy
repository\\librarySQLQuery\\lib
rarySQLQuery.lrep libs\\
 java -jar ${XUMLC} -uml
uml/useLibrarySQLQuery.xml
 """
 archiveArtifacts artifacts:
'repository/useLibrarySQLQuery
/UseE2ELibraryExample.rep'
}

 In section , you can define the tasks to process steps
in this stage, e.g.

dir: to change the active directory within the Git
repository
bat: to execute batch commands (Windows), e.g.

Call the library build.
Copy the library repository to the libs folder.
Call the xUML model build.

Wrap the batch commands in

single quotes (), if Jenkins variables should '
not be resolved within the batch command
double quotes (), if Jenkins variables should "
be resolved within the batch command
triple single quotes () or triple double '''
quotes () for multiple line batch scripts"""

archiveArtifacts: to define a list of artifacts
(outputs) of this job. These artifacts can be
downloaded via the Jenkins console.

java -jar ${XUMLC} -uml uml
/librarySQLQuery.xml

Call the xUML Command Line Compiler. The location
of the compiler is specified via a Jenkins parameter
(see above).

copy
repository\\librarySQLQuery\\lib
rarySQLQuery.lrep libs\\

Copy the compiled library repository to the libs folder of
the project, so it will be used when compiling the usage
model. For more details, see Compiling Libraries and

.Library Usage Models

e2ebridge deploy E2ELibrary
/repository/useLibrarySQLQuery
/UseE2ELibraryExample.rep -h
<Bridge host> -u <user> -P
<password> -o overwrite

Call the Bridge CLI to deploy the compiled service to a
Bridge.

dir('Advanced Modeling') {
 bat """
 java -jar ${REGTEST} -
project PState -suite "QA Tests
/Tests" -logfile result.xml -
host <Bridge host> -port <port>
-username <user> -password
<password>
 """
}

Call the RegTestRunner to perform regression tests on
the newly deployed service. The location of the
RegTestRunner is specified via a Jenkins parameter
(see above).

For more details on Apache Groovy, refer to the .Apache Groovy Script Documentation
You can check the script's syntax before execution using Pipeline Linter, a command line tool that is
coming with Jenkins. Refer to the for more information on Linter.Jenkins Documentation

The Build Process
And that's all? Yes, it is. Every time you will push changes to the related Git repository, the multibranch
pipeline job will be triggered automatically and perform the defined steps.

On the Jenkins console, you can find a nice overview on each test run:

https://doc.scheer-pas.com/display/BRIDGE/xumlc#xumlc-CompilingLibrariesandLibraryUsageModels
https://doc.scheer-pas.com/display/BRIDGE/xumlc#xumlc-CompilingLibrariesandLibraryUsageModels
http://groovy-lang.org/documentation.html
https://jenkins.io/doc/book/pipeline/development/#linter

The Jenkins console log shows the processing in detail:

Some Jenkins Hints

Hint Description

first run
of a
Jenkins
job

The first run of a Jenkins job may take a little longer, depending on the size of the Git
repository that is checked out.

addition
al
stages

You can not only use Jenkins to automate your building, deploying and testing, but also to

publish the build result to a delivery endpoint
send mails containing the build results to all who are concerned

paramet
ers

You can use parameters with your multibranch pipeline (see also Jenkinsfile above).

Parameter definition: Jenkinsfile
Parameter value specification: Jenkins job configuration or first item if choices (default
value), if triggered automatically
Parameter usage: Jenkinsfile
The first run of a parameterized pipeline will fail, because Jenkins needs the first run
to add the parameters to the pipeline configuration. Same, when parameters change.

concurr
ent
builds

You can use to prevent the multibranch pipeline to be disableConcurrentBuilds()
triggered while another build is still running. Nevertheless, this will not prevent multiple
branches within the same job being processed in parallel.
To prevent this, you could e.g. allow certain build steps - that cannot run in parallel - for
specific branches only.

Other Useful Tasks to be Automated

Task Description

change
service
preferences

You can use the Bridge CLI to change the preferences of a service, e.g. to set the
flag for automatic startup:

e2ebridge preferences <service name> --pref.
automaticStartup=true -u <user> -P <password>

You can list all available preferences with

e2ebridge preferences <service name> -u <user> -P <password>

change
service
settings

You can call the Bridge API to change the settings of a service:

e2ebridge settings <service name> [-n|--nodejs] [set
<setting name> <settings value>]... [Bridge connection]

	Continuous Delivery with the Bridge

