
Custom Notification Implementation
E2E provides a standard implementation of the Monitoring Service. In general, notifications are sent by
email and/or any other custom notification scheme, which can be configured using the Monitoring UI
service. The standard E2E Monitoring service (E2EMailJiraMonitoring) puts JIRA as the custom
notification scheme. However, alternative custom notifications schemes can be implemented as well. The
bulk of the required functionality is implemented in a xUML library . The BPMN diagram libMonitoring
below illustrates the overall process (click to enlarge):

When the E2E Bridge sends an error to be notified, the notification port first performs a couple of checks
(i.e. whether a dedicated handling record exists, whether a downtime has been configured, whether the
occurrence counter reached the threshold for reporting). In case these checks all go fine, the notification
sub process is started. This sub process defines three extension points for custom notifications:

checkBlockNotification: return true to suppress the notification of this error
getAdditionalKey: provide a string value, which will be included in the email notification as addit
ional key
sendCustomNotifications: perform any custom notification you want

The mechanism by which these extension points are called is by means of a CustomMonitoringDelegate
class which you have to provide in your custom monitoring service.

Implementing the CustomMonitoringDelegate
The shall implement three methods, which get the notification in question CustomMonitoringDelegate
as parameter. See the below class diagram for an overview:

Operation Parameter Type Direction Description Values
/Example

checkBlock
Notification

data Notificat
ionData

in Contains the notification data.

block Boolean out Use this flag to block the notification
from being sent (default = false).

f
al
se

Do not
block
notification
s (default).

tr
ue

Block
notification
s.

getAddition
alKey

monitoringDa
ta

EventD
ata

in Contains the event data.

additionalKey String out Used to return a string that will be
added in the monitoring email as an
additional key (default = none)

a valid string

sendCusto
mNotificatio
ns

data Notificat
ionData

in Contains the notification data for your
custom notification handling.

On this Page:

Implementing the
CustomMonitoringDelegate
Setting up Your Custom
Monitoring Service

Related Pages:

Usage of the Monitoring UI

https://doc.scheer-pas.com/display/BRIDGE/Usage+of+the+Monitoring+UI

1.
2.
3.

4.

5.

In most cases, the content of the (which can be accessed through the EventData NotificationData
instance) instance shall suffice. On some rare occasions, additional information which is internally held in
the structure might be useful as well, so we decided to provide it as parameter, even if NotificationData
most of its attributes will be irrelevant for the task at hand.

Class Attribute
Name

Type Description

EventD
ata

service String Name of the service that originally has thrown the error.

type String Error type.

code String Error code.

additionalKey String Additional key for persistent state error objects.

level String Error log level.

category String Error category.

host String Host name where the error occurred.

timestamp DateTime Timestamp when the error occurred.

processID String ID of the process in which the error occurred.

detailLocation String Location of the logfile the error originally was logged to.

description String Error description.

Notifica
tionData

nagiosDescripti
on

String Description for the Nagios command (only used with Nagios).

additionalInfoFr
omErrorListFile

String Additional values for this specific error (threshold, remarks).
This content is coming from the configurations specified in the
Monitoring UI for this kind of error (see).Usage of the Monitoring UI

event EventDa
ta

Specifies the EventData object to be notified.

eventTimestamp Array of
DateTime

Timestamp when the error occurred.

handling error The error object that lead to this event.

messageBody String The body of the email message that will be sent.

nagiosDescripti
on

String The description for the Nagios command (only used with Nagios).

notifyCustomSy
stem

Boolean The configuration setting, telling if custom notification is requested for
this error.

pstateMonitorU
RL

String URL of the corresponding persistent state object.

serviceURL String URL of the service that originally threw the error.

toRecipientsDo
wntime

String List of recipients configured to be notified in case of downtime.

Setting up Your Custom Monitoring Service
In order to setup your custom monitoring service, you have to perform the following steps:

Create a new E2E model.
Import (provided by E2E).libMonitoring.lrep
Create your delegate, inheriting from the class provided in the CustomMonitoringDelegate
library.

e.g. , Base Classifier libMonitoring::MonitoringService::MyMonitoringDelegate
Delegates::CustomMonitoringDelegate
Override the three methods mentioned above to suit your needs.

Create your delegate factory, implementing the interface CustomMonitoringDelegateFactory
provided in the library.

e.g. , Realized Interface libMonitoring::MyMonitoringDelegateFactory
MonitoringService::Delegates::CustomMonitoringDelegateFactory
Implement the method, in which you create an instance of createDelegate MyMonitori

 and return it as output.ngDelegate
Create a service start up activity.

Create an activity, e.g. .onServiceStartup
In this activity

https://doc.scheer-pas.com/display/BRIDGE/Usage+of+the+Monitoring+UI#UsageoftheMonitoringUI-ManagingErrorDefinitions

5.

a.

b.
c.

6.

Create an instance of libMonitoring::MonitoringService::settings
CustomMonitoringSettings.
Create an instance of your .factory MyMonitoringDelegateFactory
Use the memory adapter to globally store the factory under key settings.

.delegateFactoryKey
Create a component diagram for your service, and at least

Create E2ESOAPService on port 19000, and assign the library MonitoringService
E2ESOAPPortType to it.MonitoringPort
Create E2ESOAPService on port 19002, and assign the library MonitoringServiceUI
E2ESOAPPortType to it.MonitoringUIDBHandling
Create E2ESOAPService MonitoringInfoService on port 19003, and assign the

 to it.library E2ESOAPPortType InfoPort
Select Aliases/Resources and .libMonitoring MailLibrary
On the E2EComposite, select your startup activity in the attribute .startupActicity
Create any additional services you may have created ports for.
Select any additional resources you may have defined/imported.

The service name and port number scheme used in the component diagram ensures backwards
compatibility with previous versions of Monitoring services. You are free to assign different names and
ports, but this will require you to adjust the SOAP client settings on the Monitoring UI as well as the
Monitoring SOAP port settings on the E2E Bridge.

	Custom Notification Implementation

