
Modeling Tasks
Tasks are the heart of each business process - they are where the actions of the process are
implemented. Actually, you can directly connect a start event to an end event and draw a process without
any tasks but this would be not meaningful in most cases.

With BPMN models in , you can model the following types of tasks:Scheer PAS Designer

Type Usage Reference
Documentation

Execution State
(Example)

Task that
contains
implement
ations that
are
executed
automatica
lly when
the
process
reaches
the task.
The
process
continues
to the next
element
when the
execution
ends.

Service Task
On Exit

Executed_D
o_something

Process
engine
waits for
an
external
trigger
message
to arrive.
Once the
message
has
arrived,
the
process
continues
at this
point.

Receive Task
On Exit

Waiting_for_
Receive_a_
message

Process
engine
waits for
an
external
trigger
message
to arrive
when a Us

is er Task
reached.
In most
cases, a
user form
would be
related to
this type
of task.
The
process
engine
continues
once the
form has
been filled
in and
send back.

User Task
Get Data
On Exit

Waiting_for_
User_Task

On this Page:

Service Tasks
Implement
Execution

Error
Handling

Receive Tasks
Implement
Execution

Error
Handling

User Tasks
Implement
Execution

Error
Handling

BPMN_Service_Task_Example

Click the icon to
download a
simple example
project that shows
what you can do
with Service

 in Tasks Scheer
 .PAS Designer

BPMN_Receive_Task_Example

Click the icon to
download a
simple example
model that shows
what you can do
with Receive

 in Tasks Scheer
 .PAS Designer

BPMN_User_Task_Example

Click the icon to
download a
simple example
project that shows
what you can do
with User Tasks
in Scheer PAS De

.signer

https://doc.scheer-pas.com/display/DESIGNER/Service+Task
https://doc.scheer-pas.com/display/DESIGNER/Receive+Task
https://doc.scheer-pas.com/display/DESIGNER/User+Task
https://doc.scheer-pas.com/download/attachments/139427842/BPMN_Service_Task_Example.zip?version=5&modificationDate=1683901608000&api=v2
https://doc.scheer-pas.com/download/attachments/139427842/BPMN_Receive_Task_Example.zip?version=4&modificationDate=1683896704000&api=v2
https://doc.scheer-pas.com/download/attachments/139427842/BPMN_User_Task_Example.zip?version=5&modificationDate=1683901608000&api=v2

Service Tasks
A contains implementations that are performed during process execution.Service Task

The screenshot above displays the BPMN diagram of the service, and BPMN_Service_Task_Example
the execution diagram related to service task . Although the Designer allows for Sort words in message
service tasks without any execution diagram, this does not make much sense.
Empty execution diagrams will be reported by the compiler with a warning.

Once the service task has been reached during process execution, the process state machine will switch
to a state . In the example that would be Executed_<name of the service task with underscores> Exec

.uted_Sort_words_in_message

Implement Execution

For service tasks, you can add the following execution:

Execution Description API / Example

On Exit Contains the execution to be performed in this process step. No API.

You can also delete the execution entirely. In this case, the service task does nothing but On Exit
logging that this process step has been passed.

Error Handling

If the implemented execution is erroneous, the process goes to an error state. The process provides a
retry functionality. Upon retry, the service task will be restarted from the beginning and the implemented
execution will be performed once again. This means, before triggering a retry you need to fix the error.

Refer to for more information on persistent state transaction Persistent State Transaction Concept
handling.

Receive Tasks
A can be used to introduce data into a process other than via a user input.Receive Task

Related Pages:

Supported Form Elements
Service Task
Receive Task
User Task

Modeling Message
Reception
Using Forms

Form Elements in
the Data Model
Process Data
From a Form

Related Documentation:

Persistent State
Transaction Concept

BPMN_Service_Task_Example

Click the icon to download a simple example project that shows what you can do
with in .Service Tasks Scheer PAS Designer

https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Transaction+Concept
https://doc.scheer-pas.com/display/DESIGNER/Supported+Form+Elements
https://doc.scheer-pas.com/display/DESIGNER/Service+Task
https://doc.scheer-pas.com/display/DESIGNER/Receive+Task
https://doc.scheer-pas.com/display/DESIGNER/User+Task
https://doc.scheer-pas.com/display/DESIGNER/Modeling+Message+Reception
https://doc.scheer-pas.com/display/DESIGNER/Modeling+Message+Reception
https://doc.scheer-pas.com/display/DESIGNER/Using+Forms
https://doc.scheer-pas.com/display/DESIGNER/Using+Forms#UsingForms-FormElementsintheDataModel
https://doc.scheer-pas.com/display/DESIGNER/Using+Forms#UsingForms-FormElementsintheDataModel
https://doc.scheer-pas.com/display/DESIGNER/Using+Forms#UsingForms-ProcessDataFromaForm
https://doc.scheer-pas.com/display/DESIGNER/Using+Forms#UsingForms-ProcessDataFromaForm
https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Transaction+Concept
https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Transaction+Concept
https://doc.scheer-pas.com/download/attachments/139427842/BPMN_Service_Task_Example.zip?version=5&modificationDate=1683901608000&api=v2

The screenshot above displays the BPMN diagram of the service, and BPMN_Receive_Task_Example
the execution diagram related to service task . Although the Designer allows for Receive a Message
receive tasks without any execution diagram, this does not make much sense. You will at least may want
to persist the incoming message to be available in the next steps of your process.
Empty execution diagrams will be reported by the compiler with a warning.

Once the receive task has been reached during process execution, the process state machine will switch
to a state . In the example that would be Waiting_for_<name of the receive task with underscores> W

.aiting_for_Receive_a_message

Implement Execution

For receive tasks, you can add the following execution:

Execution Description API / Example

On Exit This execution is performed in the exit behavior of the related
process state, once the message has been received. This
execution gets the message that has been send as a parameter,
and you can persist it to have access to the contents later on in the
process.
Refer to for more information on Modeling Message Reception
message handling.

POST /{id}
/<name of
the receive
task with
underscores>
POST /{id}
/Receive_a_me
ssage

Besides persisting the message, you can add more executional parts but consider the pitfalls of error
handling (see below) in this case. You can also remove the execution entirely. In this case, the On Exit
message parameter is dropped.

Error Handling

If the implemented execution is erroneous, the process goes to an error state. The process provides a
retry functionality but note the following in case of retry:

On Exit is executed when the state related to the receive task (e.g. Waiting_for_Receive_a_m
) is left. A retry will start from the process step that follows the receive task.essage

The (partly erroneous) implementations of the receive task will not be processed again on retry.
So consider wisely which activities to put in to the execution of a receive task.On Exit

BPMN_Receive_Task_Example

Click the icon to download a simple example model that shows what you can do
with in .Receive Tasks Scheer PAS Designer

Do not implement activities that e.g. rely on backend systems that may be down, or
other data processing. We recommend to put these into a service task as a next
process step, as error handling of service tasks differs from receive tasks.

https://doc.scheer-pas.com/display/DESIGNER/Modeling+Message+Reception
https://doc.scheer-pas.com/download/attachments/139427842/BPMN_Receive_Task_Example.zip?version=4&modificationDate=1683896704000&api=v2

Refer to for more information on persistent state transaction Persistent State Transaction Concept
handling.

User Tasks
Similar as with , the process engine waits for an external trigger message to arrive when Receive Tasks
a is reached. In most cases, a user form would be related to this type of task, and the process User Task
engine continues once the form has been filled in and send back.

The screenshot above displays the BPMN diagram of the service, and the BPMN_User_Task_Example
execution diagram related to service step . Although the Designer allows for user tasks without User Task
any execution diagram, this does not make much sense. You will at least may want to persist the
incoming message/form data to be available in the next steps of your process. Empty execution
diagrams will be reported by the compiler with a warning.
User tasks can be associated with forms. Refer to for more information on form handling, Using Forms
and all other possibilities.

Once the user task has been reached during process execution, the process state machine will switch to
a state . In the example that would be Waiting_for_<name of the user task with underscores> Waiting

._for_User_Task

Implement Execution

For user tasks, you can add the following execution:

Execution Description API / Example

Get Data This execution is performed before showing the related form. It will
also be called if you restart or refresh your Browser before having
sent back the form.

You can use this execution to prepopulate form elements. It has a
generated return parameter of type form class (see Using Forms >

).Form Elements in the Data Model
Refer to for more Using Forms > Prepopulate Data Into a Form
information on form handling.

GET /{id}
/<name of
the user
task with
underscores>
GET /{id}
/User_Task

On Exit This execution is performed in the exit behavior of the related
process state, once the message containing the form data has
been received. It gets the form data as a parameter, and you can
persist it to have access to the contents later on in the process.
Refer to for more Using Forms > Process Data From a Form
information on form handling.

POST /{id}
/<name of
the user
task with
underscores>
POST /{id}
/User_Task

BPMN_User_Task_Example

Click the icon to download a simple example project that shows what you can do
with in .User Tasks Scheer PAS Designer

https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Transaction+Concept
https://doc.scheer-pas.com/display/DESIGNER/Using+Forms
https://doc.scheer-pas.com/display/DESIGNER/Using+Forms#UsingForms-FormElementsintheDataModel
https://doc.scheer-pas.com/display/DESIGNER/Using+Forms#UsingForms-FormElementsintheDataModel
https://doc.scheer-pas.com/display/DESIGNER/Using+Forms#UsingForms-PrepopulateDataIntoaForm
https://doc.scheer-pas.com/display/DESIGNER/Using+Forms#UsingForms-ProcessDataFromaForm
https://doc.scheer-pas.com/download/attachments/139427842/BPMN_User_Task_Example.zip?version=5&modificationDate=1683901608000&api=v2

Besides persisting the message, you can add more executional parts to but consider the pitfalls On Exit
of error handling (see below) in this case. You can also remove the execution entirely. In this On Exit
case, the message parameter is dropped.

Error Handling

If the implemented execution is erroneous, the process goes to an error state. The process provides a
retry functionality but note the following in case of retry:

On Exit is executed when the state related to the user task (e.g.) is Waiting_for_User_Task
left. A retry will start from the process step that follows the user task.
The (partly erroneous) implementations of the user task will not be processed again on retry. So
consider wisely which activities to put in to the execution of a user task.On Exit

Refer to for more information on persistent state transaction Persistent State Transaction Concept
handling.

Do not implement activities that e.g. rely on backend systems that may be down, or
other data processing. We recommend to put these into a service task as a next
process step, as error handling of service tasks differs from user tasks.

https://doc.scheer-pas.com/display/BRIDGE/Persistent+State+Transaction+Concept

	Modeling Tasks

