
REST Service
With the , you can model REST services and develop software in the form of resources with Builder
RESTful interfaces. For more information on the concepts of REST refer to the Wikipedia pages of Repre

.sentational State Transfer

These pages explain, how REST concepts are implemented to the Bridge. The implementation supports
JSON and XML content types and provides an for a REST service OpenAPI 2.0 Specification
documentation and test.
You could also use plain HTTP to build RESTful services yourself - how to do this is described on RESTfu

. However, this approach is recommended only for content types divergent to JSON and l HTTP Service
XML.

The xUML REST service supports IPv6. For more information on how to a REST service via the access
Bridge, refer to .REST Adapter

Concepts and Conventions
The concepts of REST are based on Resource-Oriented Architecture (ROA) design principles. All
elements accessible via the REST interface are REST resources, that can be accessed via their path.

Figure: Example Class Diagram of a REST Interface

The REST Resource Path

Resources can be accessed via their resource path. Together with protocol, server name/IP, and port,
the paths form URLs. Unless proxied, the protocol is always HTTP in the Bridge.

The resource paths are calculated from the underlying model: the resulting path is a concatenation of all
relative paths in the model hierarchy. The path starts with '/' - denoting server root - followed by the path
definitions of the REST port type. Next, the path definition of each nested resource is appended, finalized
by the path definition of the method.

Parts of the resource path can be dynamic, a so called path variable. This is a part of the path that can
be given any value at runtime. Each dynamic path segment within a path has to have a unique name as
it will be turned into an method parameter. Have a look at the figure above and the following examples:

Resource Class Resource Path Example Resource Path

support API SupportA
PI

/support /support

support cases supportca
ses

/support/supportcases /support/supportcases

a specific support case supportca
se

/support/supportcases/:id /support/supportcases/1234

On this Page:

Concepts and Conventions
The REST
Resource Path
REST Parameters

Output
Input

REST Methods
REST
Documentation

REST Service and HTTP
Protocol Support

HTTP Header
Roles

Related Pages:

Defining a REST Service
Interface
Handling Blobs in the
REST Interface
Documenting a REST
Service
Implementing REST
Methods
REST Service Error
Handling
Calling REST Services
Testing REST Services
REST Service
Authentication
REST Service Reference

Representational State
Transfer
RESTful HTTP Service
OpenAPI 2.0 Specification
REST Adapter

Example File (Builder project Add-ons/REST):

<your example path>\Add-ons\REST\uml\supportManager.xml

<your example path>\Add-ons\REST\uml\supportManager_auth.xml

https://doc.scheer-pas.com/display/BRIDGE/Builder+User+Guide
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
https://openapis.org/
https://doc.scheer-pas.com/display/BRIDGE/RESTful+HTTP+Service
https://doc.scheer-pas.com/display/BRIDGE/RESTful+HTTP+Service
https://doc.scheer-pas.com/display/BRIDGE/REST+Adapter
https://doc.scheer-pas.com/display/BRIDGE/Defining+a+REST+Service+Interface
https://doc.scheer-pas.com/display/BRIDGE/Defining+a+REST+Service+Interface
https://doc.scheer-pas.com/display/BRIDGE/Handling+Blobs+in+the+REST+Interface
https://doc.scheer-pas.com/display/BRIDGE/Handling+Blobs+in+the+REST+Interface
https://doc.scheer-pas.com/display/BRIDGE/Documenting+a+REST+Service
https://doc.scheer-pas.com/display/BRIDGE/Documenting+a+REST+Service
https://doc.scheer-pas.com/display/BRIDGE/Implementing+REST+Methods
https://doc.scheer-pas.com/display/BRIDGE/Implementing+REST+Methods
https://doc.scheer-pas.com/display/BRIDGE/REST+Service+Error+Handling
https://doc.scheer-pas.com/display/BRIDGE/REST+Service+Error+Handling
https://doc.scheer-pas.com/display/BRIDGE/Calling+REST+Services
https://doc.scheer-pas.com/display/BRIDGE/Testing+REST+Services
https://doc.scheer-pas.com/display/BRIDGE/REST+Service+Authentication
https://doc.scheer-pas.com/display/BRIDGE/REST+Service+Authentication
https://doc.scheer-pas.com/display/BRIDGE/REST
http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
https://doc.scheer-pas.com/display/BRIDGE/RESTful+HTTP+Service
https://openapis.org/
https://doc.scheer-pas.com/display/BRIDGE/REST+Adapter
https://doc.scheer-pas.com/download/attachments/2286600/REST.zip?version=5&modificationDate=1653990627000&api=v2

a specific method on a specific
support case

supportca
se

/support/supportcases/:id
/resolve

/support/supportcases/1234
/resolve

support cases of a customer customer /support/customer/:
customerID

/support/supportcases
/customer/0815

REST Parameters

Output

There can be exactly one output parameter that has to be of complex type. It will be written to response b
. The format of the response depends on the definitions in the REST headers and ody Accept Content-
. The Bridge supports JSON and XML.Type

Input

Input parameters can be provided via path, query, body, or header of the HTTP request.

Parameter Description Example

path Path parameters are part of the path and, in consequence, the
URL. They are all required.

id on rest
resource supp
ortcase

query Query parameters are appended to the path after the '?' delimiter
in standard query-string. Query parameters are optional.

status and cus
 tomerName

on resource su
, pportcases

method GET/

header Header parameters are transferred through request headers.

body Body parameters are transferred within the request body. Since
there is only one body, only one body-parameter can be defined
for a method.
The form of the body should correspond to the Content-Type
header, or header if the former is not present. Bridge Accept
REST services accept both, JSON and XML content types.

supportcase
on resource su

, pportcases
method POST

REST Methods

REST Methods are methods that can be called on REST resources via HTTP requests. The Bridge
supports the following HTTP methods for REST methods: GET, POST, PUT, PATCH, DELETE,
OPTIONS and HEAD. REST methods have their own path relative to the parent resource they are
defined on. Refer to further above for an example and to The REST Resource Path Defining REST

 for more details.Operations

REST Documentation

Analogously to the WSDL file of SOAP services, the Builder generates an OpenAPI 2.0 Specification
service descriptor encoded in YAML (Swagger), that describes the REST interface.
The Bridge comes with a REST service documentation and test tool that reads the service descriptor and
shows an overview of the capabilities of the REST service. Furthermore, it enables you to interact with
the service and perform HTTP calls. Refer to for more details.Testing REST Services

REST Service and HTTP Protocol Support
Runtime 2019.9 Bridge xUML services read the following incoming HTTP headers containing correlation
information:

X-Transaction-Id or (in JMS context)xTransactionId
This header identifies the transaction the call belongs to. You can set the transaction id
manually with . If not set, the Runtime will generate one.setTransactionID
This header will be passed through the callstack to identify all service calls that belong to a
transaction.
X-Request-Id
This header should identify the unique request.
X-Sender-Host and X-Sender-Service
These headers should contain the sender host resp. the sender service.

These headers will be all . Having this information, you can use this for error logged to the transaction log
analysis or usage metrics.

https://doc.scheer-pas.com/display/BRIDGE/Defining+a+REST+Service+Interface#DefiningaRESTServiceInterface-DefiningRESTOperations
https://doc.scheer-pas.com/display/BRIDGE/Defining+a+REST+Service+Interface#DefiningaRESTServiceInterface-DefiningRESTOperations
https://openapis.org/
https://doc.scheer-pas.com/display/BRIDGE/Testing+REST+Services
https://doc.scheer-pas.com/display/BRIDGE/setTransactionID
https://doc.scheer-pas.com/display/BRIDGE/Contents+of+the+Transaction+Log

HTTP Header Roles

Runtime 2020.12 If the standard HTTP header handling does not meet your needs, you can take control
of the header handling by defining your own header roles.
Refer to for a detailed explanation of HTTP Header Support > Overwriting the Standard HTTP Headers
how to use this feature.

https://doc.scheer-pas.com/display/BRIDGE/HTTP+Header+Support

	REST Service

