
Form and Form Validation

In classic web development a form was defined using a HTML tag enclosing all the needed input <form>
tags like text input fields, textareas or select lists to just name a few. xUML UI uses AJAX to send out
form data and the way this is done is a different approach. When using AJAX the form data is not
submitted using the classic HTML form, the data is collected from the input elements and placed as an
object which is then sent via an AJAX call. The AJAX call itself then is sent using HTTP POST method to
a server side handler.

Tab Order
It is frequently necessary to control the order of going through the input fields when pressing tab. This
can be done by setting the HTML attribute tabindex. Apply the stereotype to the <<HTMLElement>>
input fields and set the tabindex attribute:

The tabindex attribute controls both whether an element is tabbable and/or focusable. The tabindex
attribute takes a number. Depending on whether the number is positive or negative defines the element's
behavior.

Setting the tabindex to a positive number defines where the element falls in the tab order (and can
receive the focus). Defining the tabindex to -1 causes the element to be skipped in the tab order but
allows the element to receive the focus. In both cases, setting the tabindex causes the element to fire
both onFocus and onBlur events. As you would expect, invisible elements can neither receive the focus
nor be tabbed to.

When specifying the tab index on visible elements, the order is defined as follows:

Elements with tabindex=0 are ordered based on the source
Any element with tabindex >0 appears before all elements with tabIndex=0
Any Elements with the same tabindex are ordered based on the source order

Form Definition
In xUML UI Forms are designed using the standard form input elements which are placed within a
container (Panel, Frame, etc.). The actual Form is modeled then in the Binding diagram where each form
input element then is bound to a services request input object.

On this Page:

Tab Order
Form Definition

Hidden Text
Elements

Form Validation
Email Address
URL
Date
Integer Values
Float Values
Custom Value
Validation
Custom Complex
Validation
Custom Error
Messages

Related Pages:

Authentication and
Authorization
File Upload
HTTPS
History State
Form and Form Validation
Calling a UI from external
Applications
Usage of Choices
Service Calls
HTTP Proxy
Controller States
Back Button and Browser
History
Mock-Ups

Example File (Builder project Advanced Modeling/UI):

<your example path>\Advanced Modeling\UI\uml\uiForm.xml

https://doc.scheer-pas.com/display/BRIDGE/Authentication+and+Authorization
https://doc.scheer-pas.com/display/BRIDGE/Authentication+and+Authorization
https://doc.scheer-pas.com/display/BRIDGE/File+Upload
https://doc.scheer-pas.com/display/BRIDGE/HTTPS
https://doc.scheer-pas.com/display/BRIDGE/History+State
https://doc.scheer-pas.com/display/BRIDGE/Calling+a+UI+from+external+Applications
https://doc.scheer-pas.com/display/BRIDGE/Calling+a+UI+from+external+Applications
https://doc.scheer-pas.com/display/BRIDGE/Usage+of+Choices
https://doc.scheer-pas.com/display/BRIDGE/Service+Calls
https://doc.scheer-pas.com/display/BRIDGE/HTTP+Proxy
https://doc.scheer-pas.com/display/BRIDGE/Controller+States
https://doc.scheer-pas.com/display/BRIDGE/Back+Button+and+Browser+History
https://doc.scheer-pas.com/display/BRIDGE/Back+Button+and+Browser+History
https://doc.scheer-pas.com/display/BRIDGE/Mock-Ups
https://doc.scheer-pas.com/download/attachments/2286600/UI.zip?version=4&modificationDate=1627663380000&api=v2

As seen in above figure, the use dependencies from the different input elements are bound to the Create
 class. This class is the input of the service which is then sending the populated SupportCaseRequest

request object.

Hidden Text Elements

Next to the normal form input elements, there is the possibility to define custom validation messages.
These messages consist of a text label with the stereotype applied to them. These <<UIMessage>> <<UI

 elements are not visible on the page itself, but can be accessed via e.g. JavaScript or they Message>>
can be bound to a specific custom error message.

To have a greater flexibility, labels are visible or invisible depending on their location. If <<UIMessage>>
a is placed within a container element e.g. a Panel, then the message will be visible on <<UIMessage>>
the screen. If the label is drawn outside of the container, then it will be hidden. In the <<UIMessage>>
below figure, the label will be displayed on the page Please enter a valid text into the description field
while the label is hidden and not visible to the user. As a rule, everything Please enter a valid number
modeled on a container UI element will be displayed.

These are localized which means, that they are handled as normal labels, although <<UIMessages>>
they are not visible to the user. The message text will change therefore the language.

Form Validation
By using the jQuery forms plugin the Bridge gets a powerful form validation mechanism. The validation
will give direct user feedback in form of a corresponding error message displaying next to the UI
component. Whether a form is validated depends on the tagged value given on a onlyIfValid <<UITransiti

.on>> If it is true, the transition takes place only if the form could be validated successfully. If it
 When using a form which is validated (false, no validation takes place. This is the default. onlyIfValid

set to), the can not be left until the form input data is verified and valid.true <<UIState>>

The validation rules are by default derived from the types of the UML attributes bound to the input fields.
The following sections describe how the attribute types influence the validation. If the rules become more
complex - for example by depending on the values of other fields - it is possible to define them by using
JavaScript. How this is done is explained in .CustomComplexValidation

Email Address

The email address is validated on the correct syntax by giving the request class name@domain.ch
attribute the input field binds to the type . In case the email address does not meet the email EMailString
address pattern the warning message will appear.

URL

As with the email address validation a url can be forced to be checked to the url syntax by binding the
input field to the request class attribute having the type .URLString

Date

When using the date chooser the date will be inserted in the corresponding valid format. But
nevertheless it is validated to the format and to the date itself.

Integer Values

Integer values are generally validated to meet their rule of being a digit number only.

Float Values

As with integer values, the float value is validated against being a digit number.

Custom Value Validation

The above basic validation mechanisms are often not enough for real world scenarios. This is why it is
possible to extend the existing validation mechanism with own custom types. These custom types need
to be a generalization of a Base Type e.g. .String

In the above figure the custom type named Description is a generalization of the Base Type String.
Important for having rules to be defined on the generalization itself, the stereotype <<E2EValueGeneraliz

 needs to be applied. The following parameters can then be defined:ation>>

Parameter Description

Length The length of a the input value

Max Length The maximal length of the input value is allowed to have, e.g. the description should
not exceed 200 characters

Min Length The minimal length the input value must have, e.g. the description should have at least
20 characters

Max Value The maximal value the input value is allowed to have, e.g. the number should be not
bigger than 1000

Min Value The minimal value the input value must have, e.g. the number must be at least 100
and above

Pattern The pattern parameter allows to define a regular expression to which the input value
has to match.

The custom type will validate as: the description text needs to have at least 10 characters, Description
but not more than 200 and needs to match the regular expression as defined.

Custom Complex Validation

It is also possible to define custom JavaScript based validation rules. The model compiler uses a jquery
 to validate forms. This plug-in offers functions to declare and apply validation methods. validation plug-in

For example, the following JavaScript expression declares the noEmptyDropDownList validation rule. If
this rule is invoked a anonymous function is being called checking whether the value of the element is
empty or not:

$.validator.addMethod(
 "noEmptyDropDownList",
 function(value, element) {
 try {
 return value != "";
 } catch(err) {
 return false;
 }
 },
 "must not be empty!"
)

The parameters of the operation are:addMethod

name: The name of the method, used to identify and referencing it, must be a valid JavaScript
identifier

http://docs.jquery.com/Plugins/Validation
http://docs.jquery.com/Plugins/Validation
http://docs.jquery.com/Plugins/Validation/Validator/addMethod

method: The actual method implementation, returning true if an element is valid. First
argument: Current value. Second argument: Validated element. Third argument: Parameters.
message: The default message to display for this method.

Typically, the rule definition is put into a JavaScript method called right at the initialization transition to the
first UI state. Afterwards, the rule definition can be attached to HTML elements by applying rules("add",
<rule name>) to a jQuery result set. For example:

// Add Rules to Elements - being evaluated after changing the field myid
$("#ID::myid").rules("add", "noEmptyDropDownList");

Besides adding rules it is also possible to remove them using rules("remove", <rule name>) (for more
details see).http://docs.jquery.com/Plugins/Validation/rules

After the rules have been attached to HTML elements, they are checked following the same pattern as all
built-in rules. However, sometimes it is useful to enforce the validation. This can be done by applying
valid() onto the form element. For instance:

// Enforce rule validation - being evaluated immediately (assumption: myid
is part of the formid form)
if (!($("#ID::formid").valid())) {
 // do something
}

Custom Error Messages

In most cases the default jQuery framework error messages are not really describing enough for users to
understand them properly. Further, certain error messages have to be more business related. xUML UI
offers a way to model custom error messages for any of the form input elements which are available.
These custom error messages are which are bound via a <<UIMessages>> <<UIValidationMessageBindi

 dependency. As it is an error message which will appear in case a validation returns an error, the ng>>
rules need to be set on the dependency connecting the and the form input value as <<UIMessage>>
shown in the below figure.

The following error types are supported and can be configured on the <<UIValidationMessageBinding>>
dependency:

Error Type Example of the allowed text format

required This field is required.

email Please enter a valid email address.

url Please enter a valid URL.

date Please enter a valid date.

number Please enter a valid number.

phoneUS Please enter a valid phone number.

digits Please enter only digits.

creditcard Please enter a valid credit card number.

maxLength Please enter no more than {0} characters.

http://docs.jquery.com/Plugins/Validation/rules

minLength Please enter at least {0} characters.

maxValue Please enter a value less than or equal to {0}.

minValue Please enter a value greater than or equal to {0}.

pattern Please enter a valid account number (dd-dddd-ddd-dd)

	Form and Form Validation

