
Tables
A very common user interface element for displaying data is a . Next to presenting data in a grid, Table
the xUML UI offers a lot of additional functionality which comes out-of-the-box and does not Table
require any further scripting or development. The features are: Table sorting on every column, full text
search on the grid data, on the fly definition of the amount of entries to show within the grid and
pagination.

See below the UI of the .SimpleTableExample

Service Data Binding setup
A table holds a grid of data columns giving information on what data is displayed and rows which hold the
actual data. For the Table widget to be able to render the data coming from e.g. a database query, the
data needs to be prepared and bound to the widget in a special way.

The data structure is a complex type holding 0..* rows. For example, the following class is the Customer
Data Model of the Table widget for this particular case. Note, Data Models should be kept in a top level
package .DataModels

The binding is done on the Table user interface element itself by connecting it to the Customer record
element. This alone is not enough, because the table widget does not know which of the Customer
objects attributes (id, name, email, comment) are mapped to which column in the (ID, Name, E-Table
Mail, Comment). As shown in the figure below, each element is mapped to the <<Column>>
corresponding attribute using a dependency.<<use>>

On this Page:

Service Data Binding setup
Table Properties
Column Properties Binding
Table Column/Row Order
Table Row Binding and
Event Context
UI Elements Nested in
Table Cells

Related Pages:

Usage of the UI Widgets:

Autocomplete
Checkbox
Combo Box
Date Chooser
Multi-select Lists
Radio Button Group
Tables
Tabs

Example File (Builder project Advanced Modeling/UI):

<your example path>\Advanced Modeling\UI\uml\uiSimpleTable.xml
<your example path>\Advanced Modeling\UI\uml\uiSimpleTableExport.xml
<your example path> \Advanced Modeling\UI\uml\uiAdvancedTable.xml

https://doc.scheer-pas.com/display/BRIDGE/Auto+complete
https://doc.scheer-pas.com/display/BRIDGE/Checkbox
https://doc.scheer-pas.com/display/BRIDGE/Combo+Box
https://doc.scheer-pas.com/display/BRIDGE/Date+Chooser
https://doc.scheer-pas.com/display/BRIDGE/Multi-select+Lists
https://doc.scheer-pas.com/display/BRIDGE/Radio+Button+Group
https://doc.scheer-pas.com/display/BRIDGE/Tabs
https://doc.scheer-pas.com/download/attachments/2286600/UI.zip?version=4&modificationDate=1627663380000&api=v2

Table Properties
The Table widget does not only show table data but also bears functionality which is practical and does
not need additional JavaScript programming or modeling. The typical table functionality is sorting of
columns, searching the table content, making column visible or hide them or defining a specific width.

The stereotype allows to set base table properties. The stereotype is applied on the <<UITableBinding>>
 dependency connecting the user interface table element with the data providing class.<<use>>

The following tagged values can be set on the dependency.<<UITableBinding>>

Tagged
value

Description Allowed Values

Name Enter a name for the dependency (optional). any string

Filter Enable or disable filtering of visible table data.

Filtering in DataTables is "smart" in that it allows the end user to
input multiple words (space separated) and will match a row
containing those words, even if not in the order that was specified
(this allows matching across multiple columns).

tr
ue

Enable data filtering.

fa
lse

No data filtering (default).

Paginate Enable or disable table pagination. tr
ue

Enable pagination.

fa
lse

No pagination (default).

Pagination
Type

Select how the user should be able to navigate through the pages. t
w
o
_
b
u
tt
on

Navigate through the
pages with two arrow
buttons (default).

fu
ll
_
n
u
m
b
ers

Navigate through the
pages using full page
numbers with buttons for
next, previous, first, and
last page.

Length
Change

Define if the user should be allowed to change the count of visible
table rows manually.

As per default, the user can only select default counts from a drop
down box if pagination is enabled (see).Paginate

tr
ue

The user can manually
enter a count of visible
table lines.

fa
lse

The user can only use the
values provided in the drop
down list (default).

Display
Length

Specify how many rows should be displayed initially on table load.

This setting also changes the steps of the drop down list where
the user can change the count of visible table rows (default
values are 10, 25, 50, and 100). The new sizes are calculated by
multiples of .Display Length

a valid integer

10 Default.

Info Enable or disable the table information display. This shows
information about the data that is currently visible on the page,
including information about filtered data if that action is being
performed

tr
ue

Show table information.

fa
lse

Do not show table
information (default).

Sort Enable or disable sorting of columns. Sorting of individual
columns can be disabled by the option for each column.sort

tr
ue

Enable column sorting.

fa
lse

Column sorting disabled
(default).

Auto
Width

Enable or disable automatic column width calculation. tr
ue

Enable automatic column
width.

fa
lse

Automatic column width
disabled (default).

Server
Side
Processing

Enable this tagged value for using server side pagination. For
each processing event (draw, pagination, sort, filter, etc.) the data
is fetched from the server.

tr
ue

Enable server side
pagination.

fa
lse

Server side pagination
disabled (default).

Layout This tagged value allows you to specify exactly where in the DOM
the various table controls should be injected. For example the
pagination controls at the top of the table. DIV elements can also
be used to add additional styling.

The following syntax is expected:

< and > - div with a class
<'class' and > - div with a class

Examples:

<'H'lfr>t<'F'ip>
<'top'i>rt<'bottom'flp><'clear'>

Options

l length changing

f filtering input

t the ablet

i information

p pagination

r p ocessingr

T export/copy bu tonst

Constants

H jQueryUI theme eader h
classes

F jQueryUI theme ooter f
classes

State Save Enable state saving. When enabled, a cookie will be set to save
the table display information such as pagination, display length or
sorting. In case of the end user reloading the page, the table will
remain with the settings as before.

tr
ue

Enable state saving.

fa
lse

State saving disabled
(default).

Scroll X Enable horizontal scrolling. When a table is too wide to fit in a
certain layout, x-scrolling can be enabled showing the table within
a scrollable viewport.

n
o
ne

Horizontal scrolling
disabled (default).

a
v
al
ue

Enable horizontal scrolling.

The value can be any CSS
unit or a number (in which
case it will be treated like
pixel measurement).

Scroll Y Enable vertical scrolling. Vertical scrolling will constrain the
DataTable to the given height, and enables scrolling of any data
which overflows the current viewport.

This can be used as an alternative to paging to display a lot of
data in a small area (although paging and scrolling can both be
enabled at the same time).

n
o
ne

Vertical scrolling disabled
(default).

a
v
al
ue

Enable vertical scrolling.

The value can be any CSS
unit or a number (in which
case it will be treated like
pixel measurement).

Column Properties Binding
The stereotype allows to set table column properties. The stereotype is set on the <<UIColumnBinding>>

 dependency connecting the column classes to the data providing class attributes.<<use>>

The column settings which influence the widgets behavior are set on the <<UIColumnBinding>>
stereotype. The column settings are set in the tagged value section of the dependency Usage
specification window.

Tagged
value

Description Allowed Values

cssClass Allows to define a custom CSS class to the column. a string

searchable Define whether this column should be search by the search functions. true Search the contents
of this column
(default).

false Disable search for
this column.

sortable Specify whether this column should be sortable by clicking on the
column title.

true Column is sortable
(default).

false Disable sorting for
this column.

visible Specify whether this column should be visible. An example can be
found .here

true Column is visible
(default).

false Column is not
rendered.

width By default the columns width depends on the content. To have more
control over the columns width behavior, the width can be manually
set.

an integer

Initial
Sort Order

Specify the sort order of the column when being rendered for the first
time.

asc
endi
ng

Sort column data
ascending (default).

des
cen
ding

Sort column data
descending.

Table Column/Row Order
To set or change the order of the table columns or rows, proceed as follows:

Select the
table in the Co

 ntainment
tree and
expand the
table node.

Select a
column or row
and select Ele
ment

 Numbering
from the
context menu.

Select all
columns or
rows and click

 to Create
insert Column
numbering.

Now, you can
use four
buttons to
change the
column or row
order:

Edit, to
directly
edit the
element
number.
Remove
/Remove
Recursiv
ely, to
remove
the
element
numberin
g.

Increase
/Decrease
, to move
the
column
or row
down or
up.

Click , to OK
save your
changes.

Table Row Binding and Event Context

This
will
not
rem
ove
the
colu
mn
or
row
from
the
table
, but
only
the
num
berin
g.

Data held by a table row can be accessed by the event of an embedded button or link element as click
described further below. However, if the whole row is to be selectable, use and event=click eventSource

 as shown below:=<TableReference>

As result of the above state machine, a modal dialog is opened if the user clicks on a row:

The service being called when clicking on a row is . The input of the service is the getCustomerDetails C
 object in the current example. Thus, one needs a binding between the class and the ustomer Customer

table columns:

Besides triggering service calls by table events it is also possible to call JavaScript operations. The
following example shows a list of links in the first column. When clicking on one of these links the
application is left but before doing so a pop-up prints a warning. The warning shall contain the actual
URL of the links. In order to store this information we use a hidden column.

The UI state machine of this model is shown below. Basically, it calls the JavaScript operation clickedOn
 for the on the : Link event=click eventSource=IDlink

Figure: Calling a JavaScript Operation in a Table
If a JavaScript operation is called within the table context, the signature of the operation contains three
parameters:

event: the having triggered the transitionW3C event

Example Files (Builder project Advanced Modeling/UI):

<your example path>\Advanced Modeling\UI\uml\uiTableAndRowEvent.xml
<your example path>\Advanced Modeling\ \uml\uiTableAndLinks.xmlUI

http://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html
https://doc.scheer-pas.com/download/attachments/2286600/UI.zip?version=4&modificationDate=1627663380000&api=v2

row: the HTML row (<tr>) on which the event has been triggered. This row contains only the
.visible elements

data: the data of the row on which the event has been triggered. This row contains all
elements including the hidden columns.

In the current example, the hidden column contains the actual URL of the link display in the first column.
A table column is hidden by setting the tagged value on a usage visible=false <<UIColumnBinding>>
dependency:

In order to access the hidden column data in JavaScript operation, the parameter has to be used as data
depicted below:

At runtime, the Firebug debugger can be used to show the content of the parameter:data

UI Elements Nested in Table Cells
It is possible to nest user interface elements in a table cell. This is commonly used to provide the user
with an option to view more detailed information within a dialog window. This nested element is mostly a
button or a link object.

The button in the above figure is modeled within a table column called Options. The button element
needs to be nested within the column element. This is important for the element to get the rows context.

An example of a link nested in table can be found in above.Table Row Binding and Event Context

	Tables

