
Modeling the Java Components
Each xUML service starts its own instance of a Java Virtual Machine (JVM) at service startup, if the
composite contains one or more s.<<JavaComponent>>

The settings the JVM used to execute the imported Java code can be configured on the composite:

Its tagged values are:

Tagged
Value

Description

Kill JVM
Threads
On
Shutdown

If threads are still running on shutdown they are killed.

Jvm
Options

Java Virtual Machine options. The option strings has one of the following formats: "-
D=...", "-X...", "_...", The system properties java.class.path and java.library.path are set
by the model compiler and can not be overridden in the model.

On this Page:

Java Archive Artifacts
Resource File Artifacts

Related Pages:

The Components Wizard
Deploying and Managing
Java Archives
Importing Java™ Classes
and Properties Resource
Files

https://doc.scheer-pas.com/display/BRIDGE/Components+Wizard
https://doc.scheer-pas.com/display/BRIDGE/Deploying+and+Managing+Java+Archives
https://doc.scheer-pas.com/display/BRIDGE/Deploying+and+Managing+Java+Archives
https://doc.scheer-pas.com/display/BRIDGE/Importing+Java+Classes+and+Properties+Resource+Files
https://doc.scheer-pas.com/display/BRIDGE/Importing+Java+Classes+and+Properties+Resource+Files
https://doc.scheer-pas.com/display/BRIDGE/Importing+Java+Classes+and+Properties+Resource+Files

Jvm
Shutdown
Operations

Java operation being called before shutdown.

Parallel
JVM
Operations

Number of parallel open JavaVM threads within the runtime. Default: 100. If the limit is
reached, the runtime tries for 60 seconds to obtain a free JVM thread. If it does not
succeed, an error (JAVAADLM/19) is thrown.

A component diagram can be drawn with the help of the Component Wizard (for more information refer
to). To ensure that the component diagram is correct, we recommend the The Components Wizard
usage of the wizard.

The following pictures show how to add java components to component diagram.

All imported Java
Components are
listed in column Ex

.isting Services

Take all the items
the service needs
for its execution
from the list on the
left hand side to
the right hand side
and click .Add

Upon completion,
the component
wizard will draw
the component
diagram as
exemplified by the f

. irst figure

Java Archive Artifacts
<<JarFile>> artifacts have two tagged values, and .deploy boot

In the example above, the artifact will be deployed together with the compiled xUML JavaCollections.jar
service (the tagged value is set to). It is also possible to deploy Java archives via the Bridge deploy true
to prevent transferring big amounts of data when deploying them together with the service repository via
the Builder. Another advantage of deploying Java archives via the Bridge is that they are not only used
locally by the xUML service as it would be the case with the Java archive in the JavaCollections
example above, but also globally by all xUML services deployed to the node instance. For more details
on deploying Java archives via the Bridge, refer to .Deploying and Managing Java Archives

The tagged value indicates if the Java archive is to be contained in the Java boot class path. In the boot
example above, the tagged value is set to .false

The Importer will prompt you to define both tagged values for each Java archive you want to import. For
more details, see .Importing Java™ Classes and Properties Resource Files

In the Builder, you must always import all Java archives that are necessary at runtime, no matter if
you deploy them via the Builder or the Bridge. This way, all involved Java archives will be
documented in the component diagrams, too. All imported Java archives reside in the <<JavaCompo

 created by the Java Importer.nent>>

https://doc.scheer-pas.com/display/BRIDGE/Components+Wizard
https://doc.scheer-pas.com/display/BRIDGE/Deploying+and+Managing+Java+Archives
https://doc.scheer-pas.com/display/BRIDGE/Importing+Java+Classes+and+Properties+Resource+Files

Resource File Artifacts
The Importer can also import properties resource files, which imported Java class may need at run-time.
In the component diagram a resource file is represented by an artifact stereotyped as . <<ResourceFile>>
It is a resident of an instance of a Java Component artifact. Logically, a resource file artifact is a
manifestation of a class having the stereotype .<<Resource>>

	Modeling the Java Components

