
Defining a REST Service Interface
Wanting to implement a REST interface to a service, you first have to figure out the resource structure.
Have a look at the structure of the rest example:

Figure: Example Class Diagram of a REST Interface

The rest interface has the following structure:SupportAPI

Resource Methods

supportcases that accept GET, GET/ and POST. GET Get some information on the
existing support cases.

GE
T/

Get all support cases.

PO
ST

Create a new support case.

Underneath the , there is a single supportcases supportcase
that can be accessed via its .id

DEL
ETE

Close a support case.

GET Get the data of a single
support case.

res
olve

Set the status of the support
case to "resolved".

Underneath the as well, there is a supportcases customer
that can be accessed via its .customerID

GE
T/

Get all support cases of that
specific customer.

From the example, you can see implementations of GET, POST and DELETE methods. Of course, you
can use the other available methods with the Bridge, as there are PUT, PATCH, HEAD and OPTIONS.

Defining the REST Port Type
A is a class having stereotype . A REST port type can be REST Port Type <<E2ERESTPortType>>
deployed just like any other xUML service. It has the following tagged values:

Tagged
Value

Description Allowed Values

Path
(path)

Defines the path to this rest interface. If empty, the path
is derived from the package structure.

none path of the package structure will
be used, e.g. /Services
/SupportCase/SupportAPI

any
valid
path
string

path string starting with "/", e.g. /
support

On this Page:

Defining the REST Port
Type

Example
Defining REST Resources

Examples
Defining REST Methods

Examples
Defining REST Parameters

Examples
REST Errors

Default Error Class
Specific Error
Classes

Related Pages:

Implementing REST
methods
REST Service Reference
RESTful HTTP Service

REST resources are generated to the OpenAPI file with their , instead of their fully class name only
qualified name (including the xUML package structure, like urn:Services.Classes.

). This implicates that their names have to be unique throughout the REST MyRESTResource
interface. The compiler will report an error, if it encounters REST resources having the same name
in different packages.

https://doc.scheer-pas.com/display/BRIDGE/Implementing+REST+Methods
https://doc.scheer-pas.com/display/BRIDGE/Implementing+REST+Methods
https://doc.scheer-pas.com/display/BRIDGE/REST
https://doc.scheer-pas.com/display/BRIDGE/RESTful+HTTP+Service

Error
Class
(errorClass)

Assigns a user-defined class to the <<RESTError>>
REST interface. This class should be set in case of
error and given back via the REST response.

any complex type describing the structure
of the error

Api
Version
(apiVersion)

Defines the API version this port type provides (for
documentation purposes only).

any string

The REST port type can be added to the component diagram just as any other port type, e.g. SOAP port
type:

Note the that can be defined on the component. This is a shadow SOAP trace port <<RESTService>>
port that can be used to test the REST methods with the .Analyzer

Example

The has path applied. The REST service can be <<E2ERESTPortType>> SupportAPI /support
accessed via instead of as depicted in the /support /Services/SupportCase/SupportAPI
containment tree below.

https://doc.scheer-pas.com/display/BRIDGE/Analyzer+User+Guide

It has a class applied as error class.<<RESTError>> RESTError

Defining REST Resources
A is a class having stereotype . This stereotype represents both: REST Resource <<RESTResource>>
collections of resources (e.g.) and single resources (). Both are handled supportcases supportcase
indifferently by the Bridge. It is the modeler who should be aware, that some methods may not make
sense on collections.

REST Resources have the following tagged values:

Tagged
Value

Description Allowed Values

Relative
Path
(relativePat
h)

Defines the path of the REST resource or collection in
relation to the parent resource . You can provide a static
path, or a dynamic path using the notation :<name of a

. You may also provide a combination of REST Parameter>
both.

none the name of the REST
resource will be used,
e.g. /supportcases

any valid
string

the given name will be
used

a
dynamic
path
supplying
a REST
parameter

dynamic path, the
value of the REST
parameter will be
passed to the REST
methods, e.g. :id

Examples

Example REST Resource Description

s
u
p
p
or
tc
as
es

REST resource supportcases
has no relative path applied.
It will be accessible via /supp

. The ort/supportcases
first part of the URL is coming
from the value of the path
REST port type.

s
u
p
p
or
tc
ase

REST resource supportcase
has a dynamic path applied: :

. It will be accessible via id /s
upport/supportcases

, e.g. /<a specific id> /s
upport/supportcase

. must be a REST /1234 id
parameter and accepted by
all related REST operations
to this resource.

For more information on
REST parameters refer to Defi

.ning REST Parameters

c
u
st
o
m
er

REST resource customer
has a combined static and
dynamic path applied: custom

. This is er/:customerID
necessary to avoid conflicts
with , which also supportcase
has dynamic elements in its
path.
This resource will be
accessible via /support
/supportcases/customer
/<a specific customer

, e.g. id> /support
/supportcases/customer

. must be /0815 customerID
a REST Parameter and
accepted by all REST

 related to this operations
resource.

For more information on
REST parameters refer to Defi

.ning REST Parameters

Defining REST Methods
A is an method having the stereotype . REST methods must be static.REST Method <<REST>>

With REST methods, we distinct between methods and methods.verb named

Verb Methods
Verb-methods intercept requests issued directly to the resource. Unlike named methods, verb-
methods cannot specify path parameters other than the ones defined by the parent resource(s).
With the Bridge, you can use all available HTTP methods, as there are GET, POST, PUT,
DELETE, PATCH, HEAD, and OPTIONS.

: A on /support/supportcases will route to the method of class Example GET GET supportcases
and give an overview on the existing support cases.
Named Methods
To call such method, append its name (or) to the parent resource.relativePath

: A on will route to the Example PUT /support/supportcases/1234/resolve resolve
method of class .supportcases

REST methods have the following tagged values:

Tagged
Value

Description Allowed Values

Http
Method
(httpMetho
d)

Provide the HTTP method of this REST method should
respond to.

a
val
id
HT
TP
me
thod

GET, POST, PUT, DELETE,
PATCH, HEAD, OPTIONS

<<REST>> is the stereotype to apply to a REST method. Do not confuse with , <<RESTOperation>>
which is used for RESTful HTTP services as described on .RESTful HTTP Service
The latter approach is recommended only, if you want to use content types different to JSON and
XML.

The trailing /

Verb methods (unlike normal methods) can be in form of or - the difference is subtle but GET GET/
significant.

Think about the support manager example.

Issuing a on is expected to return a list of existent GET /support/supportcases /
support cases.
A on is expected to return information on the support GET /support/supportcases
cases in general, e.g number of support cases, list of customers afflicted, ...

https://doc.scheer-pas.com/display/BRIDGE/RESTful+HTTP+Service

no
ne method name, if it is one of:

GET, POST, PUT, DELETE,
PATCH, HEAD, OPTIONS
(with optional trailing '/')
GET otherwise

Relative
Path
(relativePat
h)

Defines the path of the REST method in relation to the
parent resource.

no
ne

The name of the REST method will
be used.

an
y
val
id
stri
ng

The given name will be used. The
relative path may also contain
variables (, REST path parameters
specified as) :<variable name>
and can be segmented like e.g. /da

.te=:<a date variable>

Is
Verbatim
Path
(isVerbatim
Path)

This a REST Adapter setting and has no effect on
REST service.

Blob
Body
Content
Type
(blobBody
ContentTy
pe)

Specify a default content type for response Blob
parameters from this endpoint. This must be a list of
valid media ranges as defined in .RFC 7231
This information will be generated to the OpenAPI
descriptor file (response content type). Refer to Handlin

 for a deeper explanation g Blobs in the REST Interface
and some examples.

a
list
of
val
id
me
dia
ran
ges

e.g. application/msexcel
Default is application/octet-

 if not specified.stream

Reject
Other
Response
Content
Type
(rejectOthe
rResponse
ContentTy
pes)

Runtime 2021.6 The xUML Runtime Builder 7.15.0
performs a verification of the content-type header for
REST responses. Specify whether to return an error
(HTTP 406, not acceptable) on responses with a
content type that does not conform with the content
types specified in .Blob Body Content Type

Any mismatch will be logged to the service log on log
level . Refer to Debug Handling Blobs in the REST

 for a deeper explanation and some examples.Interface

true
Return HTTP 406 (Not
Acceptable, default).
Service log: RESTLM/47:
Client does not accept
any of declared
response content types
This exception can be
suppressed by setting Ignore

to true on the Http Errors
REST adapter alias.

fal
se Accept the request in spite of

the mismatch and handle this
within the service.
Service log (): Debug RESTLM
/10: Cannot generate
any of the expected
output formats

Accepted
Request
Content
Type
(acceptedR
equestCont
entType)

Runtime 2021.6 Provide a list of content Builder 7.15.0
types this REST endpoint accepts. This must be a list of
valid media ranges as defined in .RFC 7231
This information will be generated to the OpenAPI
descriptor file (parameter content type). Refer to Handlin

 for a deeper explanation g Blobs in the REST Interface
and some examples.

a
list
of
val
id
me
dia
ran
ges

e.g. application/xhtml+xml
Default is application/octet-

 if not specified.stream

This tag must be left unset if no output Blob
parameters are used. In future versions, the effect
of this tag may be extended to other contexts as
well.

This tag must be left unset if no output Blob
parameters are used. In future versions, the effect
of this tag may be extended to other contexts as
well.

https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2
https://doc.scheer-pas.com/display/BRIDGE/Handling+Blobs+in+the+REST+Interface
https://doc.scheer-pas.com/display/BRIDGE/Handling+Blobs+in+the+REST+Interface
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2
https://doc.scheer-pas.com/display/BRIDGE/Handling+Blobs+in+the+REST+Interface
https://doc.scheer-pas.com/display/BRIDGE/Handling+Blobs+in+the+REST+Interface
https://doc.scheer-pas.com/display/BRIDGE/REST+Adapter+Reference#RESTAdapterReference-RESTAlias
https://doc.scheer-pas.com/display/BRIDGE/REST+Adapter+Reference#RESTAdapterReference-RESTAlias
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2
https://doc.scheer-pas.com/display/BRIDGE/Handling+Blobs+in+the+REST+Interface
https://doc.scheer-pas.com/display/BRIDGE/Handling+Blobs+in+the+REST+Interface
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2

Reject
Other
Request
Content
Types
(rejectOthe
rRequestC
ontentType
s)

Runtime 2021.6 Specify whether to Builder 7.15.0
return an error on requests with a content type that
does not conform with the content types specified in Ac

.cepted Request Content Type

Any mismatch will be logged to the service log on log
level . Refer to Debug Handling Blobs in the REST

 for a deeper explanation and some examples.Interface

true
Return HTTP 415
(Unsupported Media Type) if
the request content type of a B

 input parameter does not lob
match the requirements
(default).
Service log (): Debug RESTLM
/10: Cannot generate
any of the expected
output formats
This exception can be
suppressed by setting Ignore

to true on the Http Errors
REST adapter alias.

fal
se Perform the adapter call in

spite of the "content-type"
header mismatch and handle
this within the service.
Service log: RESTLM/48:
Request content type
not declared as
accepted by the service

If the method name is one of GET, POST, PUT, DELETE, PATCH, HEAD, OPTIONS (with optional
it will be invoked automatically on its parent resource when an corresponding request is trailing '/'),

received.

Examples

Example REST Resource Method Descripton

supportcases

GET
and
GE
T/

ver
b
met
hod

Both methods have no htt
 applied as GET pMethod

is the default method.
They will be invoked,
when accessed via a GET
on /support

 or /supportcases /sup
.port/supportcases/

get
By
Date

na
me
d
met
hod

This method has httpMeth
 GET applied. It will be od

invoked on a on GET /sup
port/supportcases

./date=<a valid date>

PO
ST

ver
b
met
hod

This method has httpMeth
 POST applied. It will od

be invoked on a on POST /
.support/supportcases

supportcase

DE
LETE

ver
b
met
hod

This method has httpMeth
 DELETE applied. It will od

be invoked, when
accessed via a DELETE
on /support
/supportcases/<a

, support case id>
because its parent
resource has a relative
path :id applied.

GET ver
b
met
hod

This method has no httpM
 applied as GET is ethod

the default method. It will
be invoked, when
accessed via a on GET /s
upport/supportcases

./<a support case id>

res
olve

na
me
d
met
hod

This method has httpMeth
 PUT applied. It will be od

invoked, when accessed
via a on PUT /support
/supportcases/<a
support case id>

./resolve

https://doc.scheer-pas.com/display/BRIDGE/Handling+Blobs+in+the+REST+Interface
https://doc.scheer-pas.com/display/BRIDGE/Handling+Blobs+in+the+REST+Interface
https://doc.scheer-pas.com/display/BRIDGE/REST+Adapter+Reference#RESTAdapterReference-RESTAlias
https://doc.scheer-pas.com/display/BRIDGE/REST+Adapter+Reference#RESTAdapterReference-RESTAlias

customer

GE
T/

ver
b
met
hod

This method has no httpM
 applied as GET is ethod

the default method. It will
be invoked, when
accessed via a on GET /s
upport/supportcases
/customer/<a

, because customer id>
its parent resource has a
relative path :customerID
applied.

Defining REST Parameters
A is an input parameter of a method having the stereotype REST Parameter <<REST>> <<RESTParame

. This defines that this parameter will be provided via ter>> path, query, body, or header of the HTTP
 This has to be indicated on the parameter by setting tagged value in:request.

Tagged
Value

Description Allowed
Values

Allowed
REST
Methods

Allowed
Types

Hints and Limitations

External
Name
(externalN
ame)

Defines an
external name
for the REST
parameter

any string Use this, when wanting to access a
REST service that has parameter
names with special characters. In
this case, set this name (e.g. ugly@p

) to arameter-name externalName
and give a better name. So you will
not have to escape the parameter
every time you use it.

In
(in)

Defines how the
parameter will
be passed to
the REST
method. This
tag is mandatory
.

q
u
e
ry

via a
query
string

all all simple
types and A

 of rray
simple type

Unknown parameters will be ignored,
known will be passed to the method
after being URL-decoded.

p
ath

via the
REST
resourc
e path

all Integer, Flo
, , at String

, Boolean D
ateTime

Path parameters are all required. All
path parameters must be consumed
by the called method and the
parameter names must be the same
as the path segment identifiers
(without colon).

b
o
dy

via the
REST
call
body

POST,
PUT,
PATCH

a complex
type and Ar
ray

A REST method can have only one
body parameter.

h
e
a
d
er

via the
REST
call
header

all all simple
types and A

 of rray
simple type

Unknown parameters will be ignored,
known will be passed to the method.

Multiplicity

(multiplicity)

Defines whether
the parameter is
required, or not.

0..1 Parameter is not required.

1 Parameter is required.

All path parameters are required. For all other parameters, use the to specify whether they multiplicity
are required or not.

Examples

Example REST Resource REST
Parameter

Tagged
Value
"in"

Remark

Path parameters are always
required.

supportcases

status,
customerNa
me

query status
and custo

 merName
are
provided
via the
query
string: /su
pport
/support
cases/?
status=i
n%
20progre

. In this ss
case, the
xUML
Runtime
will
automatica
lly assign
the
parameter
s coming
with the
query
string to
the REST
parameter
s.

supportCase body For
posting a
new
support
case, the
support
case data
supportC

 is ase
provided
through
the HTTP

. In body
this case,
the xUML
Runtime
will
automatica
lly assign
the data
from the
embodied
JSON or
XML
document
to the
REST
parameter
class.

supportcase

id path REST
resource s
upportcase
has a
dynamic
path :id
applied.
For this
reason, all
methods
of this
resource
must have
a REST
parameter
with the
same
name id
that will
receive
the value
from the
URL.

REST Errors
REST services in general return errors via the HTTP status code, so first of all, you should carefully
choose the status code you are returning on a service call. Besides the HTTP status code there is no
standard way of how to provide additional error information with REST service implementations.
Developers can return additional information in HTTP headers or body, though.

With the Bridge REST implementation, we decided to provide error information via the HTTP body by an
error class or a .Blob

Default Error Class

Each REST port type should have a default class assigned. The Bridge will use this <<RESTError>>
class as a default output in case of error.

Figure: Example REST Error Class

In case of error, this class should be

filled with some error information and
assigned to the REST HTTP response (so the error information will be returned to the caller)

The xUML Runtime will recognize attributes as error code and/or error message under the following
conditions:

if you applied the names and/or to these attribute(s)code message
if you applied the stereotypes and/or to these <<RESTErrorCode>> <<RESTErrorMessage>>
attribute(s)

In this case, Runtime error codes and/or messages will automatically by assigned to these attributes in
case of error.

Refer to for more information on error handling.Implementing REST Operations

Specific Error Classes

You can define specific error classes for specific HTTP errors to provide more information on the error, or
just return a .Blob

Figure: Specific Error Class

There is no difference between using an error class or a . Assign the specific error class to related Blob
operations or REST resources via a <<use>> dependency having stereotype <<RESTResponseDefinition

.>>

Figure: Assigning Error Class to REST Operations

Use this feature carefully. Having multiple error responses will possibly make your service confusing
and will make it harder to implement service calls for a potential client.

https://doc.scheer-pas.com/display/BRIDGE/Implementing+REST+Methods#ImplementingRESTMethods-ErrorHandling

On these <<use>> dependencies, you have to specify an HTTP status code on the tag. For this name
status code, the default error class will be overwritten by the specific class.

You can apply the following name templates:

Example
Name

Description

401 A specific
status code.

The specific error class will only be used, if exactly this HTTP status
code is send back.

40?, 4?? Defining a
status code
pattern.

The specific error class will only be used, if the HTTP status code
that is send back matches the pattern.

??? All status
codes.

This pattern defines a new default error class for the resource or
operation. The specific error class is valid for all HTTP status codes.

The definitions above are reflected in the OpenAPI service description (see).REST Response Definitions

For responses of type , you can additionally specify a blob body content type on the Blob <<RESTRespon
 (tag). seDefinition>> blobBodyContentType This information will be generated to the OpenAPI

descriptor file and will set the the "Content-Type" header to this content type. Default content type is
"application/octet-stream".

Refer to for more information on error handling.Implementing REST Operations

You cannot overwrite HTTP response codes using REST Parameter classes (like e.g. 200).

Response definitions using patterns (like e.g. 40? or 4??) can not be generated to the OpenAPI file,
so it is not recommended to use them. A response definition having pattern ??? will be generated as

 response of the operation. Refer to for more information on this.default REST Response Definitions

https://doc.scheer-pas.com/display/BRIDGE/Implementing+REST+Methods#ImplementingRESTMethods-ErrorHandling

	Defining a REST Service Interface

